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The paper considers the problem of passing from a stationary covariance, or spectral 
matrix, associated with the output of a constant linear finite-dimensional system excited 
by white noise to the set of all possible systems of minimum possible dimension which 
will generate this covariance. The problem, originally posed by R. E. Kalman in 1965, 
is solved by identifying each possible system with the solution of a quadratic matrix 
inequality; an algorithm for the solution of the inequality is also presented. 
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1. I N T R O D U C T I O N  

A fundamen ta l  p r o b l e m  of  l inear  system theory  is the fol lowing:  given an rn • p 
mat r ix  W(s) of  ra t iona l  funct ions o f  a complex  var iable  s, with W(oe) < 0% determine  
real  cons tan t  matr ices  F, H, L, and  J o f  d imens ion  n • n, n • m, n • p,  and  m • p 
such tha t  

W(s) = g ' ( s I  - -  F ) - I L  4- J (1) 

(the pr ime  denotes  matr ix  t ransposi t ion) .  The above-men t ioned  p rob l e m is mot iva ted  
by  the phys ica l ly  or ien ted  p r o b l e m  of  " rea l iz ing"  a prescr ibed t ransfer  funct ion 
matr ix  W(s) with an ana log  compute r  connect ion,  which simulates  equat ions  

s~ = F x  + Lu (2a) 

y = H ' x  4- Ju (2b) 

such tha t  L[  y] = W(s) L[u], the symbol  L[.] denot ing  Laplace  t ransformat ion .  
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The solution to this problem is well known (see, e.g., References 1-4). Also of 
interest is the problem of determining all sets, rather than one set, of matricesF, H, L, J 
satisfying (1), i.e., determining all realizations of a prescribed W(s); among all such 
realizations, those where the dimension of F has the smallest possible value are of 
special interest. Such realizations are termined minimal, and have special properties. 
For the study of these matters, see also References 1-4. 

Analogous problems arise in the simulation of prescribed spectral density 
matrices, or equivalently stationary covariance matrices. Thus suppose given a spectral 
matrix q~(s) of rational functions of s, i.e., (b(flo) is nonnegative definite for all real co, 
and (b(s) is para-Hermitian, that is, ~(s) ~ ~'(--s).  One wishes to simulate the 
spectral matrix 4 ,  that is, to find a linear system whose output has spectral density q5 
when the system input is white noise. Before considering this problem though, it is 
necessary to understand the associated analysis problem. 

If  in (2), u becomes white noise, i.e., E[u(t) u'(~-)] = 8(t -- .r), and if the eigen- 
values of F possess negative real parts, then the spectral density of the output y, call 
it q~(s), is given in terms ofF,  H, L, J b y  

~(s) = w(s) w ' ( - s )  (3) 

where W(s) is related to F, H, L, J by (1). The determination of ~(s) from F, H, L, 
and J is straightforward. 

The converse problem (which is the simulation problem) is to start with a pre- 
scribed (b(s) and arrive at a quadruple F, H, L, J such that equations (1) and (3) 
hold. The normal procedure would be to find a W(s) satisfying (3), i.e., to perform a 
spectral factorization using any of the known procedures, (5-7) and then to determine 
F, H, L, J from W(s) using one of the standard algorithms. Procedures which eliminate 
some intermediate steps are also available(8-9); these yield one quadruple of matrices 
F, H, L, J, which will suffice. 

There are however many quadruples F, H, L, J which define ananalog computer 
simulation of q)(s), first because there are many W(s) which satisfy (3), and second, 
because each W(s) can be simulated by an infinity of quadruples F, H, L, J. Let us 
though impose the natural requirement that simulations only be considered when the 
F matrix has minimum dimension among the dimensions of all F matrices which will 
work in some simulation. We shall say that such an F matrix is globally minimal and 
that F, together with the associated H, L, and J, defines a globally minimal realization 
of W(s), and, by abuse of language, of ~(s). Note that associated with any W(s) 
satisfying (3) there is a minimal realization of W(s), and, again by abuse of language, 
this is a realization of q~(s). It may not be globally minimal, however, since there may 
be another W(s) satisfying (3) such that the dimension of the F matrix in a minimal 
realization of this second W(s) is less than the corresponding quantity for the first W(s). 

The multiplicity of minimal dimension quadruples associated with one W(s) 
is easy to describe: as we know, if F, H, L, J is any one quadruple with minimal 
dimension F such that (1) holds, all other quadruples with minimal dimension F are 
given by TFT -a, (T -a) H, TL, J, where T ranges over the set of all nonsingular matrices 
of the same dimension as F. (2) However, if two quadruples are associated with 
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different transfer functions both satisfying (3), no such simple relation exists among 
them, even if they are both globally minimal. 

The problem which we consider can now be stated: For  a prescribed spectral 
density matrix q~(s), describe all quadruples {F, H, L, J} with F of globally minimal 
dimension such that any quadruple defines a simulation of (b(s), i.e., such that (1) 
and (3) hold. 

In the next section, we review the frequency-domain (or s-plane) relation existing 
between various W(s) satisfying (3), and discuss in particular the case where qS(s) 
is a scalar rather than a matrix. Section 3, the longest section, relates using state-space 
ideas the various W(s) which can satisfy (3); the main conclusion is that all quadruples 
F, H, L, J which define a W(s) satisfying (3) and which have globally minimal dimen- 
sion are defined by the solutions of a quadratic matrix inequality. The assumption 
that one solution of this inequality is known allows its replacement by a much simpler 
inequality, the solution of which is discussed in Section 4. Limiting solutions of the 
inequality (corresponding to replacing an inequality sign by an equality sign) define 
quadruples F, H, L, J for which the L matrix has a minimal number of columns; 
this is equivalent [see (1)] to the associated W(s) having a minimal number of columns, 
or [see (2)] to the system generating q~(s) having a minimal number of inputs. 

Kalman ~z~ posed a closely related problem to that considered here. He assumed 
a certain structure for the system generating 05(s), a structure derived here as a con- 
sequence of global minimality of the F matrix dimension. He restricted ~b(s) to be 
such that q~(ov) = 0, and sought to find all simulations of q)(s). 

The assumption that q~(ov) = 0 is not a helpful one to make. Indeed in Reference 8, 
for a related problem, some attention is paid to reformulating a problem where 
q~(oo) = 0 as one where q~(ov) is nonsingular before the problem proper is solved. 

2. F R E Q U E N C Y  D O M A I N  R E L A T I O N S  A M O N G  S P E C T R A L  
F A C T O  RS 

By way of introduction, consider the problem of finding system transfer function 
matrices W(s) for which the associated spectral density is 

qS(s) = (2 -- sZ)/(1 -- s 2) (4) 

It is well known that matrices W(s) exist which are 1 • 1, i.e., a single-input system 
will suffice to generate ~(s). Two simple transfer functions are defined by 

Wl(s) = (~/2 -- s)/(1 + s) and W2(s) = (V'2 + s)/(1 § s) (5) 

These system transfer functions have the same poles, but vary according to the position 
of their zeros. The zeros however are not arbitrary; as is well known, the magnitude 
of the zeros is the same, and the argument is determined to within a single ambiguity 
which fixes the position of the zeros at a point in the half plane Re[s] < 0, or the 
mirror image point in the half plane Re[s] > 0. 

One can write down other 1 • 1 transfer functions which will work; but it is clear 
that they can only vary from Wz(s) and W~(s) by the insertion of common factors 
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in the numerator and denominator, or multiplication by an "all-pass" factor, m) e.g., 
( s - -a ) ( s+a)  -1 or (s ~ - a s + b ) ( s  ~ + a s + b )  -~ with a ,b  > 0 .  There are also 
transfer function matrices generating qb(s) of dimension 1 • p, where p > 1. Thus 
the 1 • 2 matrices 

Wz(s) = ~ s 1 + s and W~(s) = 4- s 1 ~--s / (6) 

will readily be found to satisfy (3), and it is clear that for any p > 1, there are an 
infinity of different W(s) of dimension 1 x p which will satisfy (3). 

Aside from the theoretical interest in describing such W(s), study of them is 
important in network theory, where spectral factors with nonminimal p may be 
required in the synthesis of a symmetric positive real matrix, m) 

The frequency domain characterization of all the W(s) satisfying (3) has been 
given by Youla/5~ but see also Reference 12 for further remarks, We summarize the 
key results in the following Iemma. 

Lemma t.  Let ~(s) be an m x m spectral density matrix, i.e., ~(jco) is 
nonnegative definite for all real co, q)(s) ---- q~'(--s), and each entry of q5 is analytic 
for s ~ jco for all real co; suppose every entry of ~(s) is a rational function of s, and 
suppose qS(s) has rank r almost everywhere throughout the s-plane. Then, (a) there 
exists an m • r matrix W(s) of rational functions satisfying (3), with every entry of 
W(s) analytic for Re[s] >/0,  and W(s) possessing rank r throughout Re[s] > 0; 
moreover W(s) is unique to within multiplication on the right by an arbitrary real 
constant orthogonal matrix; (b) any other m • p matrix W(s) of rational functions 
satisfying (3) is given by 

W(s) = ~(s)  U(s) (7) 

where U(s) is an r • p matrix of rational functions satisfying 

u @  ~ ' ( - s )  = ~r (8) 

Conversely if U(s) is a matrix satisfying (8), then W(s) as defined by (7) satisfies 
equation (3). Im 

Note that when ~(s) is a scalar, r becomes unity, and the matrix W(s) becomes 
a scalar function with the "minimum phase" property, m~ Other 1 • 1 matrices W(s) 
satisfying (3) then follow by multiplying W(s) by an "all-pass" function.m) If  the poles 
of this function do not cancel zeros of W(s), then W(s) has more poles than W(s). 
Then the dimension of the matrix F~ in any minimal realization F~,  H~,  L~,  J~ of 
W(s) will exceed the dimension of the matrix F~ in any minimal realization F~,  H~,  
L~,  J~ of W(s). (Thus, relative to the dimensions of all possible F matrices in all 
possible quadruples realizing q~(s), F~o is not globally minimal.) On the other hand, 
if the poles of the all-pass function U(s) do cancel zeros of W(s), then W(s) becomes 
essentially W(s) with some zeros switched from the half plane Re[s] < 0 to the half 
plane Re[sl > 0. Note also that for the purpose of defining a system which will 
generate ~(s) [as distinct from finding all W(s) satisfying (3)], one requires W(s) 
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to have elements analytic in the half plane Re[s] ~ 0. This requires U(s) in (7) not 
to introduce into W(s) elements with a pole in Re[s] ~ 0. 

One can thus state in rough terms how to get all 1 x l W(s) which have an 
associated globally minimal realization. Start with the W(s) of Lemma 1; then 
transferral of any one zero from Re[s] < 0 to the mirror image point in Re[s] > 0 
(together with its complex conjugate if it is not a real zero) generates a W(s) of the 
desired type; intuitively one sees that all 1 x 1 W(s) are generated this way. Thus there 
are a finite number of such W(s), in contrast to the fact that there are an infinity of 
W(s) possessing globally minimal realizations which are 1 x p, p > 1. (The actual 
number of 1 x 1 W(s) will be at most 2% if W(s) has n zeros; it will be less if some 
of these zeros are complex.) 

For the purposes of this paper, we shall impose for most of the results further 
constraints on q~ beyond those indicated in the lemma. We shall require that ~(s) 
have full rank almost everywhere, and that qS(oo) be nonsingular. The theory is 
extendable to deal with the situation where the extra constraints fail but the procedure 
is somewhat intricate, not especially illuminating, and has in any case been covered 
before, isl 

With the extra constraints, conclusion (a) of the lemma can be strengthened to 
deduce that W(s) is nonsingular throughout the half plane Re[s] > 0. 

Associated with any spectral density matrix qS(s) there exists a positive real 
matrixZ(s), derivable as follows, m) Eachelementq~-j(s) of~(s) may be expanded as a sum 
of partial fractions and a term q~i;(oo). Those partial fractions with poles in Re[s] < 0 
may then be summed together, and when added to �89 yield the i-j entry of Z(s). 
The para-Hermitian property of O(s) then guarantees that the sum of the partial 
fractions with poles in Re[s] > 0 and �89 yields the j - i  entry of Z(--s). Thus 

~(s) = Z(s) + z ' ( - ~ )  (9) 

That Z(s) is positive real follows from the constraint on the poles of its elements, and 
the nonnegativity of qS(j~o) for all real co, see Reference 11. For future reference, we 
note that Z(oo) = Z'(oo) = �89 

Thus the earlier stated problem is one of finding all globally minimal dimension 
quadruples F, H, L, J such that the matrix W(s) defined by (1) satisfies 

z(s)  + z ' ( - ~ )  = vr w ' ( - ~ )  (lO) 

Of course, in view of the well-known connections between minimal realizations of the 
one transfer function matrix, it suffices for each W(s) possessing a globally minimal 
realization to indicate only one such realization. 

3. M A I N  R E S U L T S  

The results of this section may be summed up as follows. We shall show first 
that all W(s) satisfying (10) which possess globally minimal realizations have 
realizations with the same F and H matrices (but in general different L and J 
matrices). Then we shall consider how these L and J matrices may be generated, 
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using a minimal realization of Z(s) in (10), together with an additional matrix essen- 
tially playing the role of a parameter. Some equations will be derived which implicitly 
define all possible L and J, but are not in a form which permits the explicit construction 
of all possible L and J. These equations are known from the Kalman-Yakubovich 
lemma.a3,1~) 

The equations of the Kalman-Yakubovich lemma are then restructured so that 
the determination of all L and J matrices required the solution of a quadratic matrix 
inequality. 

l . e mma  2, Let Z(s) be a positive real matrix derived from a spectral density 
matrix qS(s) by the procedure outlined at the end of the last section, and let Z(s) have 
a minimal realization F, H, G, J. Let W(s) satisfy (10) and possess a globally minimal 
realization. Then W(s) has a realization of the form F, H, L~,  J~; moreover, there 
exists a real positive definite matrix P~ such that the following equations hold: 

P~F'+  FP~ --L~L~o' ( l la)  

P~H = G -- L~Jw' ( l lb)  

2 J  = J J , /  (1 lc) 

Conversely if real matrices Pw, L~,  and J~ can be found such that (11) hold with P~, 
positive definite symmetric, then W(s) --- H'(sI -- F)-IL~ + J~ satisfies (1) and the 
dimension of F is globally minimal. [] 

Proof. Let 3[N(s)] denote the degree m of a transfer function matrix N(s). 
If N(oo) < o% this is the dimension of the F matrix in any minimal realization of N(s). 
Then because the poles of elements of Z(s) and Z'(--s)  cannot coincide, being restricted 
to half planes Re[s] < 0 and Re[s] > 0 respectively, S[@(s)] = 23[Z(s)] by a well- 
known property of degree. A further well-known property of degree is that 

3[W(s) W'(--s)] ~< 23[W(s)], 

and thus for any W(s) satisfying (10), it must be true that 3[W(s)] >~ ~[Z(s)]. 
Reference 14 demonstrates the existence of one W(s) satisfying (10) with the 

property that S[W(s)] = S[Z(s)], and thus we conclude that any W(s) satisfying (10) 
which possesses a globally minimal realization must have ~[W(s)] = S[Z(s)]. Trivial 
modifications of Lemmas 7 and 8 of Reference 14 yield that any W(s) for which 
S[W(s)] = 3[Z(s)] and (10) holds has a minimal realization of the form F, H, L~,  J~.  
This proves the first part of the lemma. 

Define now the matrix P~ by 

PwF'+ FP~ = - - L ~ L :  ( l la)  

Since W(s) has elements with poles in Re[s] < 0, and F is of minimum dimension, 
we know that the eigenvalues of F have negative real part. Since moreover the pair F, 
Lw is completely controllable, a consequence of the minimality of F, Reference 13 
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allows us to conclude that P~ is (well-) defined uniquely from (1 la) and is positive 
definite symmetric. It remains to verify (1 lb) and (llc). Now 

W(s) W'(--s)  = JwJ j  -~- H'(sI  -- F)-aLwJw ' ~- J~oLw'(--sI --  F')-aH 

q- H ' ( s I -  F ) - I L w L w ' ( - - s I -  F ' ) - IH 

The last term may be rewritten using (1 la) to yield 

H'(sI -- F)-~LwLw'(--sI -- F')-~H : H'(sI -- F)-~P~H 4- H'Pw(--sI  -- F ' ) - IH 

so that then 

W(s)W'(--s)  = J~J~' 4- H ' ( s I - -  F)-~(L~Jw' + P~H) 4- (Lj~o'-k P ~ H ) ' ( - - s I -  F ' ) - IH 

But (10) provides another expression for W(s) W'( - -s )  in terms of the matrix quadruple 
realizing Z(s), viz., F, H, G, J. Thus 

W(s) W'(--s)  = 2J 4- H'(sI  -- F)-IG 4- G'(--sI  -- F ' ) - IH 

Setting s = 0% one recovers (1 lc). A decomposition of W(s) W'(--s)  like that used 
to obtain Z(s) from qb(s) yeilds that H'(sI -- F)-IG = H'(sI -- F)-X(LJ~ ' + P~H). 
Then we note that, because F, H is a completely observable pair, G = L j ~ '  + P,~H, 
which is (1 lb). This proves the second part of the lemma. 

Finally, suppose W ( s ) =  H ' ( s I - -F) -XL~  + J~,  and equations (11) hold for 
some positive definite P~.  The second expression above for W(s) W'(- -s)  follows 
from the definition of W(s) and from (1 la), and the third follows on using (1 lb) and 
(11c). But this expression is precisely (10), with Z(s) expanded using a quadruple 
realizing it. Global minimality is obvious. Thus the final part of the lemma is proved. 

Lemma 2 reduces to an algebraic problem the determination of all W(s) possessing 
a globally minimal realization and satisfying (3). The algebraic problem is to "solve" 
the three equations in (11) for the unknown matrices P~,  L~,  and J~ given the known 
matrices F, H, G, and J. 

As the next step in the argument, we shall now indicate a quadratic matrix 
inequality equivalent to (11); this is not the inequality whose solution is studied in 
the next section, but is more complicated and presumably harder to solve. By way of 
notation, A ~> 0 (>0)  for a symmetric matrix A will mean A is nonnegative (positive) 
definite, and A > / B  will mean that A -- B >~ 0. 

We now include the assumption that q~(ce) is nonsingular, and have: 

Theorem 1. With the same hypothesis as Lemma 2 and the assumption that J 
is nonsingular, the solution of (11) is equivalent to the solution of 

P~F'-k  FP~ ~ - - ( P ~ H -  G) (2J ) - I (P~H-  G)' (12) 

in the sense that if(1 l) hold, then Pw satisfies (12), and if (12) holds for some symmetric 
Pw, then P~ is positive definite, and associated L~ and Jw exist which with P~ 
satisfy (11). II 
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Proof .  Observe first that if J J ~ '  is nonsingular, M = J j ( J J w ' ) - l J w  <~ L 
For if x is an eigenvector of M, Ax = M x  for some ;~. Then A(J~x) = J~(Ax) = 
J~(Mx)  = (J~M) x ~- J~x since J ~ M  = J~ by inspection. Hence ~ = 1, or J~x = 0 
and thus ;t ~ 0. Thus the eigenvalues of j , ( j , j , ) - l j ~  are all either 0 or 1, which 
establishes the inequality. Note that if J~ is nonsingular, equality holds. 

Now suppose equations (11) hold. Then, as required, 

PwF' 4- FP~ ~ - -LwJU(JwJj ) -~J~LU = - - ( P , H  -- G)(2J)-Z(Pw H -- G)' 

Observe that equality holds if J~ is nonsingular, which will be the case if J~ is square' 
i.e., the associated W(s) has minimum number of columns. 

Now suppose (12) holds for some P~.  Then the matrix 

P~F'  4- FP~ 4- (P~H -- G ) ( 2 J ) 4 ( P ~ H  -- G)' 

is nonpositive definite, so that there exists a real constant matrix N such that 

P~F'  4- FPw 4- (P~H -- G)(2J)-~(P~H -- G)' = - - N N '  

(The matrix N is determined only to within multiplication on the right by an arbitary 
real constant matrix /7- satisfying 17/7' = L) Then in order that equations (11) hold, 
it is necessary and sufficient that 

and 

Lw = [ - - ( P u l l -  G)(2J) -~/~ MI V 

J~ = [(2J)1/' 01 v 

where V is any real constant matrix for which VV'  = I, and the block of zeros in J,w 
is of such a size that the number of columns of r and of Jw are equal. 

To see that P~ is positive definite, suppose this is not the case. Then the pair 
F, Lw could not be completely observable. The manipulations of Lemma 2 would 
still guarantee that W(s) = J~ 4- LU(s I  --  F) - IG satisfied Z(s)  4- Z ' ( - - s )  = 
W(s) W' ( - - s ) ,  but now, since F, Lw is not completely observable, 3[W(s)] is less than 
the dimension of F, i.e., 3[Z(s)]. The proof  of Lemma 2 shows that this is impossible. 
Thus by contradiction, P~ is positive definite. 

Theorem 1 reduces the problem of determining all solutions of (11) to the problem 
of solving (12). Although each solution Pw of (12) determines an infinity of L~0 and 
Jw, it is important to note that these vary but trivially from one another. Thus i fP~ 
determines, say, L~I ,  J~l yielding W~(s) = J w l  -~- H' (SI  - -  F ) - I L w l ,  then all other 
W(s) determined by the same P~ are given by W~(s) V, where V is a real constant 
matrix for which VV'  = L 

Rather than pursuing the problem of directly solving (12), we shall adopt a 
modified line of attack. This will require us to assume knowledge of one solution of 
(12), call it P, and then to seek the solution P~ as defined by Q = P~ - P. We have 
the following result: 
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Theorem 2. Let a symmetric P satisfy (12) with equality, and let P~ be any 
other symmetric matrix satisfying the inequality (12). Define the matrix Q by Q = 
P~ - P. Then Q satisfies 

Qff' 4- FQ <~ --QH(2J)-IH'Q (13) 

where 
F = F q- ( P H -  G)(2J)-~H ' (14) 

Conversely, if/5 satisfies (12) with equality, and Q satisfies (13), then Pw = Q § P 
satisfies (12). Finally, equality in (13) holds if and only if the corresponding P~o 
satisfies (12) with equality. [] 

Proof.  The proof is straightforward, relying on simple manipulations of (12). 
In the next section, we shall discuss procedures for solving (13). Meanwhile, 

we shall present several additional results stemming from (13). 

Corollary | .  With the same hypothesis as Theorem 1, there exists a matrix P 
satisfying (11) and (12) such that for any other solution P~,  P~ -- P >~ 0. This matrix 
/5 defines the family of spectral factors W(s) of Lemma 1 for which W(s) is nonsingular 
throughout Re[s] > 0. (Recall that two members of the family differ only by multi- 
plication on the right by an arbitrary real constant orthogonal matrix.) [] 

Proof. Define P as the matrix solution of (12) which generates a W(s). Then 
P satisfies (12) with equality, since W(s) has a minimum number of columns. Now 
W(s), being given by, say, J § H ' ( s I -  F)-IL, has inverse W -1, which is readily 
computed as 

W-l(s) = j - 1 g ' ( s I -  F 4- EJ-1It')-~EJ -~ (15) 

Now a well-known property of degree guarantees that ~[W-1(s)] = 3[W(s)], and 
so the dimension o f f  -- EJ-IH ' in the realization of W-Z(s) defined by (15) is minimal. 
Because W(s) is nonsingular throughout Re[s] > 0, it follows that the eigenvalues 
of F -- f,Y-lH' have nonpositive real parts. Recalling the definitions of f, and 3 in 
terms of P, as given in the course of the proof of Theorem 1, we note that an equivalent 
statement is that the eigenvalues of F = F 4- ( P H -  G)(2J)-aH ' have nonpositive 
real parts. Now (13) allows us to relate P to P~; since any solution of (13) defines a 
matrix K such that 

QF' + FQ =- - -KK'  (16) 

the eigenvalue restriction on F guarantees that Q is nonnegative definite, via a variant 
of the lemma of Lyapunov. ~3~ In other words, P~ -- P ~> 0 as required. 

The matrix K in (16) has additional significance. We recall from Lemma 1 
that any spectral factor W(s) can be related to W(s) via W(s) = W(s) U(s), where U(s) 
satisfies U(s) U'(--s) = L Suppose that W(s) is defined via P~ ,  L~o, and J~o, while 
W(s) is as above, in Corollary 1. Then the matrix U(s) can be checked to be 

U(s) = J-~[[J : 0] V -  H ' ( s I -  F)-IK] (17) 

where V is a real constant matrix satisfying VV' = L 
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One might well ask how P can be determined. Actually, several ways are available. 
Thus one can find W(s) by standard procedures,/5-v) and from it find P (see 
Reference 14); again, one can give an algorithm for solving (12) with the inequality 
replaced by equality, which at the same time yields P rather than any other solution of 
the equality (see Reference 8); finally, one can solve a matrix Riccati differential 
equation, a limiting solution of which satisfies (12) (see Reference 15). 

4. S O L U T I O N  OF THE M A T R I X  I N E Q U A L I T Y  

This section is devoted to the study of inequality (13), restated for convenience as 

QF' 4- _Y'Q ~ --QH(2J)-~H'Q (13) 

As we know, each solution of this inequality defines a family of globally minimal 
realizations of a prescribed ~(s). We recall that f involves the matrix P, which is 
required to be one solution of the quadratic matrix inequality (12) that is equivalent 
to the Kalman-Yakubovich equations; for convenience we shall assume throughout 
this section that P is as defined in Corollary 1, i.e., P enables us to define a globally 
minimal realization of q~(s) and of W(s), as defined in Lemma 1. This means that with 
this definition of P, all solutions of (13) are nonnegative definite, and the matrix F 
has eigenvalues with nonpositive real parts, as explained in the proof of Corollary l. 

We shall consider first the solution of (13) for nonsingular Q, and then for 
singular Q; finally, we shall note some properties of solutions of (13). 

4.1. Nonsingular Solutions of the Matrix Inequality 

All nonsingular Solutions of (13) are generated from all nonsingular solutions of 

QF' 4- FQ = --QH(2J)-*H'Q -- R (18) 

where R ranges over the set of all nonnegative definite matrices; precisely on account 
of the nonsingularity of Q, the set of nonsingular solutions to (18) is equivalent to the 
set of nonsingular solutions of 

QF' 4-_FQ = --Q[H(2J)-IH'  4- S] Q (19) 

or again, to the set of nonsingular solutions of 

F'Q-1 4- Q-1F = - H(2J)-IH ' -- S (20) 

where S ranges over the set of all nonnegative definite matrices. Solution procedures 
for (20) are well known (see, e.g., Reference 16). 

It is helpful to note a simple condition which governs whether or not (20) defines 
invertible matrices Q-1 (for one might have all solutions X of 

F ' x  + x F  - -  - - H ( 2 J ) - I H  ' - s 
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singular, and these would not yield matrices Q). This condition is that F have eigen- 
values with negative real parts, as distinct from merely nonpositive real parts. (Equiv- 
alently, W(s) is required to be nonsingular in Re[s] >~ 0, rather than Re[s] > 0, 
and ~(jco) is required to be positive, rather than nonnegative, definite, for all real co.) 
To see this, note that the nonsingularity of Q-~ and its positive definite nature guarantee 
that x'Q-lx is positive definite for all x along a trajectory of 2 = Fx. The derivative 
of x'Q-~x along a trajectory is nonpositive, being less than --x'H(2J)-ZH'x. But now 
because the pair F, H is completely observable, the pair F, H is completely observable 
[see (14)]. Then the derivative of x'Q-ix will not be identically zero along a trajectory, 
and 2 = _Px must then be asymptotically stable. Im 

4.2. Singular Solutions of the Matr ix  Inequality 

We now turn to the determination of singular solutions of (13). We exhibit first 
a simple property of such solutions, and observe how all of them may be generated. 
However, the procedure for generating all solutions is not systematic (in that one 
solution can be generated from a number of starting points). Accordingly, we then 
present a more systematic means of generating all singular solutions to (1 3). 

We start by assuming knowledge of  a solution Q to (13) which is singular. There 
exists then a nonsingular matrix T such that Q = T[ ~ o] T', where Q1 is nonsingular 
and symmetric. Then (13) yields 

[Q~ 00]T'F'T'-~ + T-1FT[ Q1 00] 

= __ [ 0 1  00] TtH(2j)_IH,,TfQ1 ~] _T_IRT,_ 1 (2l) 

where R is a nonnegative definite matrix. Define now 

T-1FT = LF21 F2zJ 

It follows readily from (21) that 

(22) 

0JLF~'2 Fs 0 I] + IILF2~ F22J[0 / 0] 

[HIH( O [R~I RI~] 
= -- L 0 0] -- LR~ Rz2J 

(23) 

with appropriate definitions of HI ,  Rl l ,  etc. On evaluating the products on the left 
side of (23), and equating the top left-hand corners of the matrix sums on each side 
of (23), one obtains 

FIIQ~ ~ + Q~F~z = --HIHI' -- R~ (24) 
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where Ra~ will be nonnegative definite. Equating the bottom right-hand corners 
yields Rz2 ~ 0, which implies because of the nonnegative nature of R that R~2 = 0. 
Finally, (23) yields 

F21 = 0 (25) 

A summary of the above analysis is as follows. A singular solution to (13) is 
transformed via a congruence transformation to display a maximum amount of 
main diagonal zeros. The associated transformation of F introduces a corresponding 
block of zeros into the transformed F. Finally, upon extracting a diagonal block from 
the quasi-upper-triangular (a6~ transformed F, (24) is solved for any nonnegative 
definite Ral �9 Note that the eigenvalues Of Fll are a subset of those ofF,  and thus (24) 
may not always yield a nonsingular solution (i.e., if R~ = 0 and F11 has eigenvalues 
with zero real part, F~IX-k XFn = --H~HI' may only have a singular solution X, 
or even no solution). 

The procedure outlined via (21)-(25) is reversible, i.e., by tracing it backward one 
can find all Q satisfying (13) or, equivalently, (26). One finds all similarity transforma- 
tions T on F reducing it to quasi-upper-triangular form [see (22) and (25)], and then 
finds for all nonnegative definite Rn matrices Qi -~ using (24). Then T[~ 0] T' is a 
solution of (13). 

The problem with generating all solutions of (13) in this way is that numbers of 
different versions of (24) may field the same Q. To see this, simply note that there 
exist many matrices Tfor  which Q may be written as T[~ t 0] T' with T, Q1 nonsingular. 
Each different T yields a different version of (24); thus starting with any of these ver- 
sions and working backward leads to the same Q. 

One natural way out of this difficulty is to work with a transformed version of (13). 
For simplicity, assume all eigenvalues o f f  are real and distinct. (The theory is extend- 
able from this case.) Then there exists a nonsingular matrix T such that i o ---- T-aFT 
is diagonal. Then with H ---- T'H(2J) -1/~, each solution ~ of 

(26) 

(where / )  ranges over the set of nonnegative definite symmetric matrices) defines a 
solution of (13) given by Q = TQT'. (The matr ix / )  in (26) is related to R in (18) by 
R ~- TRT'). Conversely, each solution of (13) defines R and a solution of (26). 

The simple form of Jr in (26) makes the determination of all singular solutions 
comparatively simple. As a preliminary we note the following: 

Lemma 3. Suppose in (26) that ~ is singular, and let x ~ 0 be such that 
~x  = 0. Then/~x ----- 0, and ~f ' ix  ~ 0 for all positive integers i. [] 

Proof. Multiply (26) on the left by x' and on the right by x. Then x 'Rx  ---- O, 
which implies/?x = 0 since/~ is nonnegative definite symmetric. Then multiply (26) 
on the right by x to obtain O~x = 0. Now apply the same argument to Fx  as was 
applied to x to conclude in turn that ~/%x = 0, ~)i03x = 0, etc. This proves the lemma. 

The fact that ~ x  = 0 implies ~ir = 0 for all positive integers i implies that 
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the vector x must have zero entries if Q is not zero. For  if x has no zero entry, the set 
of vectors x, Fx,/~2x .... spans the whole space of vectors of dimension equal to the size 
of Q.(2~ Thus every vector is in the null space of  Q, which implies that ~. is zero. 

Assume then that precisely r entries of x are zero for some x such that Qx = 0. 
By recordering the rows and columns of Q, /~, / t ,  and ~, we may suppose these entries 
are the first r. With x of dimension n, this means that the last (n -- r) entries of x 
are nonzero, and then it may be checked that the set x, Fx, P2x,... spans the subspace 
of vectors whose first r entries are zero, and whose last n -- r entries are arbitrary. 
Since any vector in this subspace is in the null space of ~ and of/~, it follows that the 
last n --  r columns of Q and/~ are zero. The symmetry of Q and/~ then implies that 
the last n -- r rows of each matrix are also zero. Thus (26) becomes 

(27) 

where the subscript 1 on a matrix denotes the removal of the last (n -- r) rows and 
columns of the matrix. The solution Q of (26) (satisfying ~ x  = 0) is given by 

: [o o, 

All nonsingular solutions of (27) now follow easily from 

F191 "1 4- 91-1/~1 = - - ( /~ / J t )  1 - -  '~I (29) 

where Sa ranges through the set of r • r nonnegative definite matrices. 
All solutions of (26) may be derived in this fashion, that is, by dropping rows and 

columns from (26) and solving the resulting equation, assuming a nonsingnlar 
solution. The point is that whereas reduction of Q via a congruency transformation 
was necessary in solving (13) as a preliminary step, this is no longer necessary in 
solving (26). 

4.3. Some Additional Points 

There is at most one nonsingular Q satisfying (13) with equality. It is given by 
solving (18) with R set equal to zero, and it generates an interesting transfer function 
family (members of the family differing by multiplication on the right by an arbitrary 
real constant orthogonal matrix). Denote a typical member of the family by W(s); 
then by proceeding along lines similar to those used in the proof  of Corollary 1, 
W-a(s) is readily found to have the poles of its elements located at the eigenvalues of 

ff ~- F + [(P + Q) H --  G](2J)-IH ' = F + QH(2J)- IH ' 

Hence it follows that 

Q P  4- PQ = QH(2J)-~H'Q 

o r  

Q-1F 4- F'Q -1 = H(2J)-IH" 

8221~IHo 
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The positive definiteness of Q and the easily proved complete observability of the 
pair F, H then show that P has all its eigenvalues in Re[s] > 0, i.e., that W(s) is 
nonsingular throughout Re[s] ~< 0. Such W(s) are equally as important as the W(s) 
o f  Lemma 1. 

In the determination of singular solutions Q of (13) via the method based on (26), 
the situation is rather more complicated when/~ has repeated or complex eigenvalues. 
Then the structure of singular solutions of (26), and in particular the location of the 
block of zeros in them, is not so simple. It should also be noted that the solution of 
(29) implicitly relies on 201 possessing all eigenvalues of negative real part, for the same 
reasons requiring F in (18) to have all eigenvalues of negative real part to guarantee 
nonsingularity of Q. 

A further point of interest is that solutions of (13) fall naturally into families, 
with each family characterized by a solution of (13) with the equality sign. This occurs 
in the following way. Let Q be an arbitrary solution of (13), and let Q be T-1QT '-1, 
so that ~ satisfies (26) for some/~. Then a number of rows and columns of ~ will 
be zero, and with an appropriate reordering of the rows and columns, a nonsingular 
submatrix Q1 of ~ satisfies (27). Now define Q1 as the nonsingular solution of 

+ - -  - ( 3 0 )  

It is not hard to demonstrate that ~1 exists and that ~)1 >~ Q- Now by reversing 
the procedure used for obtaining Q1 ~o m ~), we construct a matrix 0 which satisfies 
(26) with/~ = 0. Of course _~ >~ ~). Finally_Q -- T~_T' yields a matr~  satisfying (13) 
with equality, and such that _Q ~> Q. 

Reid ~16) has shown for equations (13) with the equality sign that if __Q is a non- 
singular solution and Q any other solution, then __Q ~> _Q. This result together with 
Corollary 1 allows us then to conclude that if there is a nonsingular solution _Q of (13) 
with the equality sign, then =(2 >~ Q ~> 0 for any solution Q of the inequality. 

5. C O N C L U S I O N S  

The determination of globally minimal realizations of a prescribed spectral 
density matrix qS(s) has been shown to be equivalent to the solution of a quadratic 
matrix inequality which is apparently difficult to solve. However, by assuming 
knowledge of one solution of this inequality, the determination of all solutions of the 
inequality can be achieved by solving a simpler quadratic matrix inequality. 

Solution procedures for this latter inequality have been discussed. It has been 
shown that the solutions fall into families characterized by limiting solutions of the 
inequality, obtained by solving it with an equality sign replacing the inequality sign. 
Upper and lower bounds on the solution to the inequality have also been derived. 

R E F E R E N C E S  

1. R. E. Kalman, Irreducible realizations and the degree of a matrix of rational functions, J. Soc. 
Ind. AppI. Math. 13(2):520-544 (June 1965). 



The  Inverse Problem of Stationary Covariance Generation t47 

2. R. E. Kalman, Mathematical description of linear dynamical systems, J. Soc. Ind. Appl. Math. 
Control, Series A 1(2):152-192 (1963). 

3. B. L. Ho and R. E. Kalman, Effective construction of linear-state variable models from input/ 
output data, 1965 Allerton Conference Proceedings, pp. 449M59. 

4. B. D. O. Anderson, R. W. Newcomb, R. E. Kalman, and D. C. Youla, Equivalence of linear, 
time-invariant dynamical systems, o r. Franklin Inst. 281(5):371-378 (May 1966). 

5. D. C. Youla, On the factorization of rational matrices, IRE Trans. Information Theory IT-7(3): 
172-189 (July 1961). 

6. M. C. Davis, Factoring the spectral matrix, IEEE Trans. Automatic Control. AC-8(4):296-305 
(October 1963). 

7. R. W. Brockett, Spectral factorization of rational matrices, IEEE Trans. Information Theory, 
to appear. 

8. B. D. O. Anderson, An algebraic solution to the spectral factorization problem, IEEE Trans. 
Automatic Control AC-12(4): 410-414 (August 1967). 

9. J. B. Moore and B. D. O. Anderson, The simulation of stationary stochastic processes," Proc. 
IEE 115(2):337-339 (February 1968). 

10. R. E. Kalman, Linear stochastic filtering theory-Reappraisal and outlook, Proceedings of the 
Brooklyn Polytechnic Symposium on System Theory, New York (1965), pp. 197-205. 

11. R. W. Newcomb, Linear Multiport Synthesis, McGraw Hill, New York (1966). 
12. R. W. Newcomb and B. D. O. Anderson, On the generation of all spectral factors, IEEE Trans. 

Information Theory, IT-14(3):512-513 (May 1968). 
13. R. E. Kalman, Lyapunov functions for the problem of Lur'e in automatic control, Proc. of the 

Natl. Acad. Sci. 49(2):201-205 (February 1963). 
14. B. D. O. Anderson, A system theory criterion for positive real matrices, SIAM J. Control 

5(2):171-182 (May 1967), 
15. B. D. O. Anderson, Quadratic Minimization, Positive Real Matrices and Spectral Factorization, 

Technical Report No. EE-6812, Department of Electrical Engineering, University of Newcastle, 
Australia (June 1968); submitted for publication. 

16. F. R. Gantmacher, The Theory of Matrices, Chelsea, New York (1959). 
17. J. LaSalle and S. Lefschetz, Stability by Lyapunov's Direct Method with Applications, Academic 

Press, New York (1961). 
18. W. T. Reid, A matrix equation related to a non-oscillation criterion and Lyapunov stability, 

Quart. J. of Appl. Math. XXIII(1):83-87 (1965). 


